
On the Role of Formal Methods in
Software Certification:
An Experience Report

Constance L. Heitmeyer1,2

Naval Research Laboratory
Washington, DC 20375

Abstract

This paper describes how formal methods were used to produce evidence in a certification, based on the
Common Criteria, of a security-critical software system. The evidence included a top level specification
(TLS) of the security-relevant software behavior, a formal statement of the required security properties,
proofs that the specification satisfied the properties, and a demonstration that the source code, which
had been annotated with preconditions and postconditions, was a refinement of the TLS. The paper also
describes those aspects of our approach which were most effective and research that could significantly
increase the effectiveness of formal methods in software certification.

Keywords: formal methods, security, software, formal verification, formal specification, certification

1 Introduction

Prior to its deployment, a security-critical software system may undergo a formal
certification to demonstrate that it satisfies critical security properties. Although
formal methods are part of the standard recommendations for developing and certi-
fying security-critical systems, how to integrate formal methods into the certification
process is, in large part, unclear. Especially challenging is how to demonstrate that
the end product of software development—the code—behaves securely. This paper
describes the formal methods and tools that our group applied to produce evidence
for the certification, based on the Common Criteria, of a security-critical software
system. It also describes the most effective aspects of our approach for certifica-
tion and research that could significantly increase the utility of formal methods in
software certification.

1 Email:heitmeyer@itd.nrl.navy.mil
2 The support of the Office of Naval Research is gratefully acknowledged. My NRL colleagues, Myla Archer,
Elizabeth Leonard, and John McLean, contributed to this research.

Electronic Notes in Theoretical Computer Science 238 (2009) 3–9

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.09.001

mailto:heitmeyer@itd.nrl.navy.mil
http://www.elsevier.com/locate/entcs

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
On the Role of Formal Methods in Software Certification: An Experience
Report

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Background

A group of international organizations established the Common Criteria to provide
a single basis for evaluating the security of information technology products [5]. Re-
cently, our group prepared evidence to support the certification, based on the Com-
mon Criteria, of a security-critical, embedded software device called ED (Embedded
Device). Required in the certification were 1) a formal proof of correspondence be-
tween a formal specification of ED’s security functions and its required security
properties and 2) a demonstration that ED’s code satisfied the formal specification.

The device of interest, ED, processes data in an embedded system whose memory
has been divided into non-overlapping partitions. Because it stores and processes
data classified at different security levels, security violations by ED could cause sig-
nificant damage. To prevent violations of data separation, e.g., the “leaking” of data
from one memory partition to another, the ED design uses a separation kernel [16],
a tamper-proof, non-bypassable program which mediates access to memory. By
mediating every memory access, the kernel ensures that every access is authorized
and that every transfer of data from one memory location to another is authorized.
Any attempted memory access by ED that is unauthorized will cause an exception.

3 Our Approach to Certification

To provide a foundation for proving the security of ED, the code implementing the
separation kernel was annotated with preconditions and postconditions in the style
of Hoare and Floyd. The evidence we produced to demonstrate that ED enforces
data separation included a Top Level Specification (TLS) of the separation-relevant
behavior of the kernel, a formal statement of data separation, and a mechanized
formal proof that the TLS satisfies data separation. In addition, we partitioned
the annotated code into three categories, each requiring a different proof strategy.
Finally, we established the formal correspondence between the annotated code and
the TLS.

Given 1) source code annotated with preconditions and postconditions and 2) a
security property of interest, the overall problem is how to establish that the code
satisfies the property. We developed a five-step process for establishing the property.
These five steps are described next.

3.1 Formulate a Top Level Specification

The purpose of the Top Level Specification (TLS) is to provide a precise, yet under-
standable description of the security-relevant behavior of the code and to make ex-
plicit the assumptions on which the security of the code is based. 3 In our approach,
the TLS is represented in precise natural language as a state machine model, using
the style of [12]. The advantage of precise natural language is that it enables stake-
holders with differing backgrounds and objectives—the project manager, software

3 For example, the assumptions for ED make explicit those routines that the certification authority agreed
were outside the scope of the formal verification.

C.L. Heitmeyer / Electronic Notes in Theoretical Computer Science 238 (2009) 3–94

developers, evaluators, and the formal methods team—to communicate precisely
about the required kernel behavior and helps ensure, early in the verification pro-
cess, that misunderstandings are weeded out and issues resolved. Another purpose
of the TLS is to provide a formal context and precise vocabulary for defining data
separation. For the details of the TLS for the ED kernel, see [10].

3.2 Formally Represent the Security Properties

In our approach, the required security properties are formally expressed as prop-
erties of the state machine model that underlies the TLS. To enforce the required
security property (data separation), ED must prevent data in a partition i from
influencing or being influenced by 1) data in a partition j, where i �= j, or 2) data
in an earlier configuration of partition i. To formally represent data separation,
we formulated a number of properties in precise natural language. Examples of
the properties are No-Exfiltration, which states that data processing in any par-
tition j cannot influence data stored outside the partition, and No-Infiltration,
which states that data processing in any partition i is not influenced by data outside
that partition.

3.3 Apply a Mechanical Prover

To demonstrate that the TLS satisfies the security properties of interest, the TLS
and the properties are translated into the language of a theorem prover and the
prover applied to prove formally that the TLS satisfies the properties. To formally
verify that the TLS for the ED kernel enforces data separation, the natural language
formulation of the TLS and the properties that represent data separation were
translated into TAME (Timed Automata Modeling Environment) [3], a front-end
to PVS [14], and TAME proofs were interactively constructed to show that the
TAME specification satisfies each property.

3.4 Partition the Code

To show formally that the system is secure, we prove that the system code is a refine-
ment of the state machine that underlies the TLS. For ED, our proof of refinement
is based on a demonstration that all kernel code falls into three major categories:
Event Code, Trusted Code, and Other Code (see [10] for details). Partitioning the
code dramatically reduces the cost of code verification since only Event Code, a
small part of the code, must be checked for conformance to the TLS. In ED, Event
Code and Trusted Code comprised less than 10% of the code. The remaining 90%
was Other Code.

3.5 Demonstrate Code Conformance

The final step is to show that each category of code is secure. To demonstrate
that the kernel’s Event Code is secure (i.e., does not violate data separation), we
constructed two mappings: 1) a mapping from the Event Code to the TLS events

C.L. Heitmeyer / Electronic Notes in Theoretical Computer Science 238 (2009) 3–9 5

and from the code states to the states in the TLS, and 2) a mapping from precondi-
tions and postconditions in the TLS events to the preconditions and postconditions
that annotate the corresponding Event Code. We demonstrated separately that
Trusted Code and Other Code were benign. Based on these results, we concluded
that the kernel code refines the TLS. Because in step 3, we proved that the TLS
satisfies the properties that guarantee data separation and because each property
is preserved under refinement, we may conclude that the kernel code is secure. For
details, see [10].

4 What Worked

4.1 Use of Natural Language

During certification, the natural language representation of the TLS enabled the
evaluators to communicate easily with the formal methods team and others, thus
ensuring that misunderstandings were avoided and issues resolved early in the cer-
tification process. The natural language representation of the TLS for ED contrasts
with the representations used in other formal specifications of secure systems. These
specifications are often expressed in specialized languages such as ACL-2 (see, e.g,
[8]). Any ambiguity in the natural language representation of the kernel behavior
was removed by translating the TLS into TAME, since the state machine semantics
underlying TAME is expressed as a PVS theory.

4.2 Use of Scenarios to Understand Requirements

One significant challenge was to understand the security-relevant behavior of the ED
kernel. To accomplish this, we designed several scenarios, i.e., sequences of events,
and executed them using the SCR (Software Cost Reduction) simulator [11]. As
expected, designing and executing the scenarios exposed gaps in our understanding
of the kernel behavior. Discussing the issues raised by the scenarios with ED’s
development team helped deepen our understanding of the required kernel behavior.

4.3 Application of a Mechanical Prover

TAME’s specification and proof support significantly simplified the verification ef-
fort. Using TAME rather than hand proofs not only reduced the time required to
complete the proofs, it also avoided some disadvantages of hand proofs, such as
overlooking one or more cases.

4.4 Application of Refinement

For the approach in Section 3 to succeed, a security property must be preserved
under refinement. It is well-known that safety (but not liveness) properties are
preserved under refinement [1]. Hence, our techniques may be used to guaran-
tee security properties that are safety properties. It is easy to show that all se-
curity properties verified for ED, except one, are safety properties and therefore

C.L. Heitmeyer / Electronic Notes in Theoretical Computer Science 238 (2009) 3–96

preserved by refinement. It is also easy to show that the one non-safety property,
No-Infiltration, is also preserved under refinement.

5 Needed Research

5.1 Automatic Checking and Derivation of Code Annotations

For many years, researchers have recommended annotating code with precondition,
postconditions, and invariants (see, e.g., [13]). Such code annotations are already
used in practice: Developers at Praxis annotate SPARK programs with assertions
and use tools to automatically check the assertions [4]. Moreover, in the largest
Microsoft product groups, annotations are a mandated part of the software devel-
opment process [6]. Unfortunately, manual annotation of source code remains rare
in the wider software industry because it is highly labor-intensive [9]. To address
this problem, Amtoft et al. have developed new techniques for checking and for de-
riving annotations from SPARK programs [2]. Tools for checking and deriving code
annotation for programs written in other languages, such as C, would be extremely
useful.

5.2 Automatic Generation of Tests from Assertions.

Many new techniques for constructing tests from formal specifications have been
proposed. Such techniques (see, e.g., [7]) derive a set of test cases from a formal
specification and use them to test the given program. One promising new approach
constructs test cases from preconditions and postconditions and uses the test cases
to check that the given program satisfies the asserted preconditions and postcondi-
tions. Validating source code in this manner should provide high assurance of both
the security and functional correctness of source code. Reference [20] describes an
approach that uses automatic test generation from preconditions and postcondi-
tions to find bugs in Java code. Similar research is needed that uses tests generated
from an annotated program written in another language, such as C, to check the
program for errors.

5.3 A Code Conformance Proof Assistant

The semantic distance between the abstract TLS required in a formal certification
and a low-level program, such as a C program, is huge. While the TLS describes
the security-relevant program behavior in terms of sets, functions, and relations,
the description of the concrete program behavior is in terms of low-level constructs,
such as arrays, integers, and bits stored in registers and memory areas. Hence,
automatic demonstration of conformance of low level C code to a TLS may be
unrealistic. A more realistic goal may be a proof assistant with two inputs, a C
program annotated with assertions and a TLS of the security-relevant functions of
that program. The assistant would help a user show conformance between the C
program and the TLS.

C.L. Heitmeyer / Electronic Notes in Theoretical Computer Science 238 (2009) 3–9 7

5.4 Automatic Code Generation

One promising way to obtain high assurance that an implementation satisfies critical
security properties is to generate code automatically from a specification that has
been proven to satisfy the properties. Automatic code generation is already feasible
for some low-level specification languages such as Esterel [18]. While constructing
efficient source code from more abstract specifications is possible for simple program
constructs using simple data types (see, e.g., [15]), new research is needed to produce
efficient code from specifications containing richer constructs and data types. Such
technology could drastically reduce the effort required to produce efficient code and
provide high assurance that the code satisfies critical security properties.

6 Conclusions

One valuable byproduct of applying formal methods in software certification is
that the process produces a formal specification of the required software behavior.
Developing this specification has at least two benefits: 1) a formal specification
can be invaluable when a new version of the software is developed, and 2) the
process of developing a formal specification by itself may expose errors. Regarding
the second point, the DO-178B certification standard for avionics software requires
testing based on the Modified Condition Decision Coverage (MCDC) test criterion.
However, to build MCDC tests, a formal specification must first be built. It has
been observed that building this specification in itself uncovers software errors [17].

This paper has described one approach to applying formal methods in the cer-
tification of software. Building on existing software certification standards, such as
DO-178B and the Common Criteria, more and improved approaches which use for-
mal methods in software certification are needed. Applying these new approaches
should have many benefits—the exposure of errors that, without formal methods,
might not have been detected; software that has high assurance of satisfying critical
security and safety properties; and the existence of a formal specification that would
not have been built otherwise.

References

[1] Abadi, M. and L. Lamport, The existence of refinement mappings, Theoretical Computer Science 82
(1991), pp. 253–284.

[2] Amtoft, T., J. Hatcliff, E. Rodrguez, Robby, J. Hoag and D. Greve, Specification and checking of
software contracts for conditional information flow, Technical report (2007).

[3] Archer, M., C. L. Heitmeyer and E. Riccobene, Proving invariants of I/O automata with TAME,
Autom. Softw. Eng. 9 (2002), pp. 201–232.

[4] Barnes, J., “High Integrity Software: The SPARK Approach to Safety and Security,” Addison-Wesley,
2003.

[5] Common criteria for information technology security evaluation, Parts 1–3, Technical Report CCIMB-
2004-01-001 through CCIMB-2004-01-003, Version 2.2, Revision 256 (2004).

[6] Das, M., Formal specifications on industrial-strength code – From myth to reality, in: Proc., Computer-
Aided Verification (CAV 2006), Seattle, WA, 2006.

C.L. Heitmeyer / Electronic Notes in Theoretical Computer Science 238 (2009) 3–98

[7] Gargantini, A. and C. L. Heitmeyer, Using model checking to generate tests from requirements
specifications, in: O. Nierstrasz and M. Lemoine, editors, ESEC/FSE’99, 7th Eur. Software Engineering
Conf. and 7th ACM SIGSOFT Symp. on Foundations of Software Engineering, Toulouse, France,
Proceedings, Lecture Notes in Computer Science 1687 (1999).

[8] Greve, D., M. Wilding and W. M. Vanfleet, A separation kernel formal security policy, in: Fourth
International Workshop on the ACL2 Prover and Its Applications (ACL2-2003), 2003.

[9] Hallem, S., B. Chelf, Y. Xie and D. R. Engler, A system and language for building system-specific,
static analyses, in: PLDI, 2002, pp. 69–82.

[10] Heitmeyer, C., M. Archer, E. Leonard and J. McLean, Applying formal methods to a certifiably secure
software system, IEEE Trans. Software Engineering 34 (2008), pp. 82–98.

[11] Heitmeyer, C. L., M. Archer, R. Bharadwaj and R. D. Jeffords, Tools for constructing requirements
specifications: The SCR toolset at the age of ten, Comput. Syst. Sci. Eng. 20 (2005).

[12] Landwehr, C. E., C. L. Heitmeyer and J. D. McLean, A security model for military message systems,
ACM Trans. Comput. Syst. 2 (1984), pp. 198–222.

[13] Meyer, B., Applying ‘design by contract’, IEEE Computer 25 (1992), pp. 40–51.

[14] Owre, S., J. Rushby, N. Shankar and F. von Henke, Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS, IEEE Transactions on Software Engineering 21 (1995), pp. 107–125.

[15] Rothamel, T., C. Heitmeyer, E. Leonard and Y. A. Liu, Generating optimized code from SCR
specifications, in: Proc., ACM SIGPLAN/SIGBED Conf. on Languages, Compilers and Tools for
Embedded Systems (LCTES 2006), Ottawa, Canada, 2006.

[16] Rushby, J., Design and verification of secure systems, in: Proceedings, 8th ACM Symp. on Operating
System Principles, 1981.

[17] Rushby, J. (2006).

[18] SCADE Tool Suite. Tools and documentation available at http://www.esterel-technologies.com/
products/scade-suite.

[19] Schneider, F. B., Enforceable security policies, ACM Trans. Inf. Syst. Secur. 3 (2000), pp. 30–50.

[20] Smaragdakis, Y. and C. Csallner, Combining static and dynamic reasoning for bug detection, in: Tests
and Proofs, First International Conference, TAP 2007, Lecture Notes in Computer Science 4454
(2007), pp. 1–16.

C.L. Heitmeyer / Electronic Notes in Theoretical Computer Science 238 (2009) 3–9 9

http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite

	Introduction
	Background
	Our Approach to Certification
	Formulate a Top Level Specification
	Formally Represent the Security Properties
	Apply a Mechanical Prover
	Partition the Code
	Demonstrate Code Conformance

	What Worked
	Use of Natural Language
	Use of Scenarios to Understand Requirements
	Application of a Mechanical Prover
	Application of Refinement

	Needed Research
	Automatic Checking and Derivation of Code Annotations
	Automatic Generation of Tests from Assertions.
	A Code Conformance Proof Assistant
	Automatic Code Generation

	Conclusions
	References

